Antarctic ice shelf basal melt

Results from Adumusulli et al. (2020), which can be found and downloaded here https://library.ucsd.edu/dc/object/bb0448974g

These load in the Adumusulli et al. (2020) data, stored as a zarr on the pangeo-glaciology Google bucket, using open_catalog method.

[1]:
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
from intake import open_catalog
import hvplot.xarray

Initalize dataset

[2]:
cat = open_catalog('https://raw.githubusercontent.com/ldeo-glaciology/subshelf_meltrates/master/A2020_meltrates.yaml')
b  = cat["A2020_meltrates"].to_dask()
b
[2]:
<xarray.Dataset>
Dimensions:    (x: 10941, y: 10229)
Coordinates:
  * x          (x) float64 -2.736e+06 -2.736e+06 ... 2.734e+06 2.734e+06
  * y          (y) float64 -2.374e+06 -2.374e+06 ... 2.74e+06 2.74e+06
Data variables:
    meltrates  (y, x) float64 dask.array<chunksize=(320, 684), meta=np.ndarray>

start a cluster to do some fast processing of this relatively small dataset

[3]:
from dask.distributed import Client
import dask_gateway

gateway = dask_gateway.Gateway()
cluster = gateway.new_cluster()

[4]:
cluster.scale(4)
client = Client(cluster)
cluster

Antarctic ice shelf firn thickness

Results from Adumusulli et al. (2020), which can be found and downloaded here https://library.ucsd.edu/dc/object/bb0448974g

These load in the Adumusulli et al. (2020) data, stored as a zarr on the pangeo-glaciology Google bucket, using open_catalog method.

[7]:
cat = open_catalog('https://raw.githubusercontent.com/ldeo-glaciology/subshelf_meltrates/master/A2020_deltaH.yaml')
dH  = cat["A2020_deltaH"].to_dask()
dH
[7]:
<xarray.Dataset>
Dimensions:        (time: 107, x: 510, y: 436)
Coordinates:
  * time           (time) float64 1.992e+03 1.993e+03 ... 2.019e+03 2.019e+03
  * x              (x) float64 -2.36e+06 -2.35e+06 ... 2.72e+06 2.73e+06
  * y              (y) float64 -2.12e+06 -2.11e+06 ... 2.22e+06 2.23e+06
Data variables:
    h_alt          (time, y, x) float64 dask.array<chunksize=(14, 109, 128), meta=np.ndarray>
    h_firn         (time, y, x) float64 dask.array<chunksize=(14, 109, 128), meta=np.ndarray>
    smb_discharge  (time, y, x) float64 dask.array<chunksize=(14, 109, 128), meta=np.ndarray>
    uncert_alt     (time, y, x) float64 dask.array<chunksize=(14, 109, 128), meta=np.ndarray>
    uncert_firn    (y, x) float64 dask.array<chunksize=(218, 255), meta=np.ndarray>
[8]:
dH.h_firn.hvplot.image('x', 'y',
                    groupby='time', rasterize=True, dynamic=True, width=800, height=600,
                    widget_type='scrubber', widget_location='bottom', cmap='RdBu_r')

[8]:
[ ]: